Abstract
Lou/C rats are a substrain of Wistar rats that exhibit a spontaneous low caloric intake and no development of obesity with age. Recently, we reported that Lou/C rats, compared to equally food-restricted Wistar counterparts, show lower resting levels of plasma glucose, epinephrine and liver glycogen. To further explore this metabolic particularity, we used exercise (swimming 60 min) as a situation of high-energy demand, to test the ability of Lou/C rats to maintain euglycemia. Male Lou/C rats (14-week-old) were compared to age-matched male Wistar rats fed either ad libitum (WAL) or Wistar rats whose food was chronically restricted (WFR) to the same caloric intake as the Lou/C rats. In spite of low liver glycogen stores ( approximately 50% of normal values), Lou/C rats were able to maintain euglycemia during exercise even though liver glycogen breakdown was blunted. The decreased use of glycogen during exercise in Lou/C rats was associated with a reduced epinephrine response compared to WFR animals. By contrast, WFR were also able to maintain euglycemia during exercise but at the expense of a significant (P<0.01) decrease in liver and muscle glycogen content. Plasma free fatty acid and glycerol concentrations were increased (P<0.01) similarly in all three groups during exercise. In a separate experiment conducted in isolated hepatocytes from 24 h fasted Lou/C and Wistar rats, it was found that gluconeogenic flux from glycerol was found to be significantly (P<0.01) higher in Lou/C than in Wistar rats (5.4+/-0.2 vs 3.7+/-0.1 micromol/min/g dry cells). Resting and exercising plasma leptin levels were also significantly (P<0.05) lower in Lou/C than in the two other groups. It is concluded that Lou/C rats have the particularity to rely spontaneously less on their liver glycogen stores to meet their energy demands during exercise while maintaining euglycemia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have