Abstract
The effect of moderate hyperleptinemia ( approximately 20 ng/ml) on liver and skeletal muscle glycogen metabolism was examined in Wistar rats. Animals were studied approximately 90 h after receiving recombinant adenoviruses encoding rat leptin (AdCMV-leptin) or beta-galactosidase (AdCMV-betaGal). Liver and skeletal muscle glycogen levels in the fed and fasted (18 h) states were similar in AdCMV-leptin- and AdCMV-betaGal-treated rats. However, after delivery of a glucose bolus, liver glycogen levels were significantly greater in AdCMV-leptin compared with AdCMV-betaGal rats (P < 0.05). To investigate the mechanism(s) of these differences, glycogen levels were measured immediately after the cessation of a 3- or 6-h glucose infusion or 3, 6, and 9 h after the cessation of a 6-h glucose infusion. Similar increases in liver and skeletal muscle glycogen occurred in hyperleptinemic and control rats in response to glucose infusions. However, 3 and 6 h after the cessation of a glucose infusion, liver glycogen levels were approximately twofold greater (P < 0.05) in AdCMV-leptin-treated compared with AdCMV-betaGal-treated animals. Skeletal muscle glycogen levels were similar in AdCMV-leptin-treated and AdCMV-betaGal-treated animals at the same time points. Glycogen phosphorylase, phosphodiesterase 3B, and glycogen synthase activities were unaltered by hyperleptinemia. We conclude that moderate increases in plasma leptin levels decrease liver glycogen degradation during the fed-to-fasted transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.