Abstract

The effects of meson-exchange currents (MEC) are computed for the one-particle one-hole transverse response function for finite nuclei at high momentum transfers $q$ in the region of the quasielastic peak. A semi-relativistic shell model is used for the one-particle-emission $(e,e')$ reaction. Relativistic effects are included using relativistic kinematics, performing a semi-relativistic expansion of the current operators and using the Dirac-equation-based (DEB) form of the relativistic mean field potential for the final states. It is found that final-state interactions (FSI) produce an important enhancement of the MEC in the high-energy tail of the response function for $q\geq 1$ GeV/c. The combined effect of MEC and FSI goes away when other models of the FSI, not based on the DEB potential, are employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.