Abstract
The changes in the mean-squared charge radius of Tlg209 (N=128) and Tlm207 (N=126) relative to Tl205 have been measured for the first time using the in-source laser resonance-ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the dominant background from isobaric francium isotopes and allows access to thallium nuclides with A⩾207. The characteristic kink in the charge radii at the N=126 neutron shell closure, as well as the odd-even effect similar to that in the adjacent bismuth, lead, and mercury isotopic chains, have been observed. The self-consistent theory of finite Fermi systems based on the energy density functional by Fayans reproduces the behavior of charge radii in these isotopic chains near N=126. The comparison with calculations in the framework of the relativistic mean field (RMF) approach is also presented. In the case of the Fayans functional it is a specific form of pairing interaction with the dependence on the density gradient that is essential to provide agreement with the experimental charge radii. In particular, the kink is reproduced without the inversion of g9/2 and i11/2 neutron single-particle states, which is a prerequisite to correctly describe the kink in the RMF models. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.