Abstract

Memristive electronic synapses are attractive to construct artificial neural networks (ANNs) for neuromorphic computing systems, owing to their excellent electronic performance, high integration density, and low cost. However, the necessity of initializing their conductance through a forming process requires additional peripheral hardware and complex programming algorithms. Herein, the first fabrication of memristors that are initially in low‐resistive state (LRS) is reported, which exhibit homogenous initial resistance and switching voltages. When used as electronic synapses in a neuromorphic system to classify images from the CIFAR‐10 dataset (Canadian Institute For Advanced Research), the memristors offer ×1.83 better throughput per area and consume ×0.85 less energy than standard memristors (i.e., with the necessity of forming), which stems from ≈63% better density and ≈17% faster operation. It is demonstrated in the results that tuning the local properties of materials embedded in memristive electronic synapses is an attractive strategy that can lead to an improved neuromorphic performance at the system level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.