Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, histopathological, molecular and gene expression techniques. The upregulated TGF-β1-signaling in the untreated rats was found to be highly correlated to transporters and microRNAs governing Aβ-efflux; ABCA1/miRNA-26 and LRP1/miRNA-205 expressions, rather than RAGE/miRNA-185 controlling Aβ-influx; an effect that was opposed by the tested drugs and was found to be correlated with the abolished TGF-β1-signaling as well. Combined memantine/rosuvastatin therapy ameliorated the STZ evoked decreases in escape latency and number of crossovers in the Morris water maze test, % spontaneous alternation in the Y-maze test, and discrimination and recognition indices in the object recognition test. The evoked behavioral responses were directly related to the β-amyloid accumulation and the alteration in its clearance. Additionally, drug treatment increased brain glutathione and decreased malondialdehyde levels. These findings were histopathologically confirmed by a marked reduction of gliosis and restoration of neuronal integrity in the CA1 region of the hippocampus of the AD rats. These findings implicated that the memantine/rosuvastatin combination could offer a new therapeutic potential for AD management by abrogating the TGF-β1/p-Smad2/p21 pathway and regulating Aβ-clearance.Graphical
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have