Abstract
This paper investigates the dynamics of melt infiltration through a preheated porous debris bed which is of importance to severe accident modeling in nuclear power plants. Proper understanding of the flow physics and affecting parameters is needed to define flow regime(s) according to combination of the driving forces, i.e. capillary and gravity. A model development and validation therefore should consider various effects and competing mechanisms. After a careful study of the governing equations and scaling rules, a known analytical model is validated against existing experimental data from REMCOD experiment. The predictions of this model are in good agreement with the experimental data. Furthermore, a global sensitivity analysis identifies the most influential parameters and reveals the need for further experiments with different range of affecting parameters. The results underline the importance of permeability as the most influential parameter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have