Abstract

Mehlich‐1 and DTPA extractants are frequently used to predict metal availability in soils. Metal extractability by the acid or chelate extractant reflects the metal characteristics and metal‐soil interactions. In this study, samples of eight topsoils from the southeastern United States were incubated with added lead (Pb) at the rate of 40 mg#lbkg‐1. After five months in the greenhouse, Mehlich‐1 and DTPA extractants were employed to extract Pb in both metal‐amended and natural soils. For the natural soils, Pb concentration in the DTPA extractant was always higher than that in the Mehlich‐1 extractant. This indicates that the DTPA chelate extractant is able to dissolve some Pb in soils which is not solubilized by protons. The negative correlation found between Mehlich‐1‐extractable Pb and soil clay content might result from two mechanisms: i) strong association between Pb and soil surfaces, or ii) readsorption of Pb during extraction. None of the correlations between DTPA‐extractable Pb and soil properties was significant, suggesting that the DTPA‐extractable Pb is not heavily dependent on soil properties. The DTPA extractant showed a high ability to solubilize Pb in the natural soils possibly due to a high affinity of Pb for soil organic matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call