Abstract
For finite dimensional vector spaces it is well-known that there exists a 1-1-correspondence between distributions of Ornstein-Uhlenbeck type processes (w.r.t. a fixed group of automorphisms) and (background driving) Lévy processes, hence between M- or skew convolution semigroups on the one hand and continuous convolution semigroups on the other. An analogous result could be proved for simply connected nilpotent Lie groups. Here we extend this correspondence to a class of commutative hypergroups.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have