Abstract
Skew convolution semigroups play an important role in the study of generalized Mehler semigroups and Ornstein–Uhlenbeck processes. We give a characterization for a general skew convolution semigroup on a real separable Hilbert space whose characteristic functional is not necessarily differentiable at the initial time. A connection between this subject and catalytic branching superprocesses is established through fluctuation limits, providing a rich class of non-differentiable skew convolution semigroups. Path regularity of the corresponding generalized Ornstein–Uhlenbeck processes in different topologies is also discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have