Abstract

ObjectiveTo assist individuals, particularly cancer patients or those with complex comorbidities, in quickly identifying potentially contraindicated medications when taking multiple drugs simultaneously. Patients and MethodsIn this study, we introduce the Medication Extraction and Drug Interaction Chatbot (MEDIC), an artificial intelligence system that integrates optical character recognition and Chat generative pretrained transformer through the Langchain framework. Medication Extraction and Drug Interaction Chatbot starts by receiving 2 drug bag images from the patient. It uses optical character recognition and text similarity techniques to extract drug names from the images. The extracted drug names are then processed through Chat generative pretrained transformer and Langchain to provide the user with information about drug contraindications. The MEDIC responds to the user with clear and concise sentences to ensure the information is easily understandable. This research was conducted from July 2022 to April 2024. ResultsThis streamlined process enhances the accuracy of drug-drug interaction detection, providing a crucial tool for health care professionals and patients to improve medication safety. The proposed system was validated through rigorous evaluation using real-world data, reporting high accuracy in drug-drug interaction identification and highlighting its potential to benefit medication management practices considerably. ConclusionBy implementing MEDIC, contraindicated medications can be identified using only medication packaging, and users can be alerted to potential drug adverse effects, thereby contributing to advancements in patient care in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.