Abstract
Tin–mercury exchange represents one of the most versatile and cleanest routes to arylmercuric halides. We found that reaction of the ferrocenylstannane 1,2-Fc(PPh2)(SnMe3) (1) with HgCl2 in acetone results in the unexpected spontaneous formation of 2·HgCl2, a diferrocenylmercury (Fc2Hg)-supported diphosphine chelate ligand as its HgCl2 complex. Mechanistic investigations into the generation of 2·HgCl2 reveal initial formation of an adduct of 1 with HgCl2, followed by competitive Sn–Me and Sn–Fc bond cleavage with formation of chloromercury and chlorodimethylstannyl-substituted ferrocene species. When the reaction is performed in chloroform as a noncoordinating solvent, formation of 2·HgCl2 is not observed, but instead 1,2-Fc(PPh2)(SnMe2Cl) (5) is generated as the major product. 5 is initially isolated as a complex with MeHgCl (generated as a byproduct), but the latter can be easily released by heating under high vacuum. When 5 is further reacted with 2 equiv of HgCl2 in acetone, the adduct 1,2-Fc(PPh2·HgC...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have