Abstract

Recent advances in preservation of the morphology of ZnO nanostructures during dye sensitization required the use of a two-step preparation procedure. The first step was the key for preserving ZnO materials morphology. It required exposing clean ZnO nanostructures to a gas-phase prop-2-ynoic acid (propiolic acid) in vacuum. This step resulted in the formation of a robust and stable surface-bound carboxylate with ethynyl groups available for further modification, for example, with click chemistry. This paper utilizes spectroscopic and microscopic investigations to answer several questions about this modification and to determine if the process can be performed under medium vacuum conditions instead of high vacuum procedures reported earlier. Comparing the results of the preparation process at medium vacuum of 0.5 Torr base pressure with the previously reported investigations of the same process in high vacuum of 10-5 Torr suggests that both processes lead to the formation of the same surface species, confirming that the proposed modification scheme can be widely applicable for ZnO sensitization procedures and does not require the use of high vacuum. Additional analysis comparing the computationally predicted surface structures with the results of spectroscopic investigations yields the more complete description of the surface species resulting from this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.