Abstract
Methylmercury (MeHg) is a toxic compound. It forms mainly in reducing environments, and then degrades through biogeochemical processes. Photodegradation and microorganism degradation of MeHg are among the processes that have been reported. However, little attention has been focused on the abiotic degradation of MeHg in soil/sediment without light. In our study, the percent MeHg of total Hg in Guangzhou soil in southern China was found to be variable and exhibited a significant negative correlation with the content of Fe or Cu where annite (KFe2+3(AlSi3O10)(OH)2), a Fe-bearing mineral, was identified. To understand the mechanisms of radical-initiated MeHg degradation by Fe/Cu-containing components, batch experiments were done. Results showed that annite in the soils could activate O2 to generate OH and O2− and facilitate MeHg degradation under oxic conditions. Meanwhile, Cu components in the soil further enhanced the production of O2−, and was oxidized to Cu(III) promoting degradation of MeHg directly. These findings help us understand that the distribution of MeHg in soil depends on not only external pollution sources, but also on biogeochemical processes in subsurface environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have