Abstract
The mechanisms of heavy-metal resistance used by adapted sulfidogenic and methanogenic enrichments degrading pentachlorophenol in the presence of cadmium (Cd) were studied. The enrichment cultures adapted to and readily tolerated bioavailable Cd concentrations up to 50 ppm while degrading an equal concentration of pentachlorophenol. Both cultures removed >95% of the Cd from solution. Transmission electron micrographs revealed (i). the presence of electron-dense particles surrounding the cells in the sulfidogenic enrichments and (ii). the unusual clumping of cells and the presence of an exopolymer in the methanogenic enrichments. Energy dispersive X-ray analysis showed that the sulfidogenic enrichments removed Cd by extracellular precipitation of cadmium sulfide, while the methanogenic enrichment culture removed Cd by extracellular sequestration of Cd into the exopolymer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have