Abstract

Mesoporous silica materials (MSMs) produced by true liquid crystal templating (TLCT) are often considered as direct inverted replicas of the initial lyotropic liquid crystal (LLC) phase. However, the predictive design of tailor-made MSMs requires the full knowledge of the TLCT process, which is still incomplete. Here, we tackle this issue by monitoring the structural evolution during the templating process by small-angle X-ray scattering, showing that after the addition of the silica source the reaction mixture is first isotropic and then an intermediary liquid crystal phase appears, which is the key to the success of the templating process, namely the formation of ordered MSMs. We analyze the structure and the formation dynamics of this intermediary phase and present a simple theoretical model, which allows us to connect the structural parameters of the initial LLC and the MSM. These results provide an enhanced understanding of the TLCT process and are an important step toward the predictable synthesis of new MSMs in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.