Abstract

This study used spent diatomaceous earth (SDE) from drink processing as source of Si and cationic surfactant (CTAB) as a template for the synthesis of mesoporous silica Materials (MSM) through hydrothermal method. The MSM was characterized by Small-angle X-ray Diffraction (SXRD), Scanning Electron Microscopy (SEM), Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy and N2 adsorption-desorption analyzer. The results showed that the surface area, pore volume and pore size was roughly ranged from 880 to 1060 m2 g(-1), 1.05 cm3 g(-1) and 4.0 nm, respectively. The properties of the synthesized MSM were also compared with those prepared from pure silica sources (MCM-41) and got almost the same characteristics. The synthesized MSM was used as adsorbent at 25 degrees C with carrier gas of air. The adsorption equilibrium revealed that adsorption capacity of MSM was 59.6, 65.7, 69.6, 84.9 mg g(-1) while the acetone concentration was 600, 800, 1000 ppm, 1600 ppm respectively. Results showed that breakthrough curves correlate to the challenge vapor concentration, adsorbent loading, and the flow rate. The results obtained in the present work demonstrated that it was feasibility of using the SDE as a potential source of silica to prepare MSM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call