Abstract

A defect-deformational (DD) mechanism is proposed for the self-organization of laser-induced point defects (vacancies and interstitials) under low-threshold (far from the melting point) local (10–100 μm) light-induced heating with the scanning periodic pulsed laser irradiation of a semiconductor resulting in an inelastic deformation of micron-sized regions of Ge. A linear theory of DD instability is developed within the model of a biaxially stressed defective film. This model describes the main experimental data on the formation of two-and one-dimensional periodic nanostructures on a semiconductor surface relief.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.