Abstract
Fundamental mechanism of femtosecond-laser-induced periodic surface nanostructure formation has been investigated under the condition using superimposed multiple shots at lower fluence than the single-pulse ablation threshold. With increasing the shot number of low-fluence fs-laser pulses, the periodic nanostructure develops through the bonding structure change of target material, the nanoscale ablation with optical near-fields induced around the high curvatures, and the excitation of surface plasmon polaritons (SPPs) to create the nano-periodicity in the surface structure. It is confirmed that non-thermal interaction at the surface plays the crucial role in the nanostructure formation. Based on the mechanism, we have demonstrated that the periodic nanostructure formation process can be controlled to fabricate a homogeneous nanograting on the target surface, using a two-step ablation process in air. The experimental results obtained represent exactly the nature of a single spatial standing SPP wave mode that generates periodically enhanced near-fields for the nanograting formation. The calculated results for a model target reproduce well the nanograting period and explain the characteristic properties observed in the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.