Abstract

The ground state properties of indium atom chains on the Si(111) 8 x 2-In surface and the nature of their insulator-metal (IM) transition near 120 K are under intense dispute. We compare experimental scanning tunneling microscopy (STM) images of the low temperature (LT) 8 x 2 phase with STM image calculations from Density Functional Theory (DFT). Our LT studies clearly indicate the existence of a frozen shear distortion between neighboring atom chains, resulting in the formation of indium hexagons. Tunneling spectra furthermore indicate that the IM transition coincides with the collapse of a approximately 0.3 eV surface-state band gap at the Gamma point of the 4 x 2 Brillouin zone. This implies that the IM transition is driven by a shear phonon, not by Fermi surface nesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.