Abstract

Author SummaryViral survival and propagation depend on the ability of the viruses to transfer their genetic material to a host cell. Viral genome delivery has been described for viruses that directly enclose their genome in a capsid or nucleocapsid, but not for internal membrane-containing viruses in which the genome is protected by a lipid vesicle enclosed by the icosahedral capsid. The latter infect organisms across the three domains of life. We use a range of electron microscopy techniques to reveal how one such virus, the bacteriophage PRD1, which uses gram negative bacteria as its host, delivers its double-stranded DNA to the bacteria across the cell envelope. The PRD1 bacteriophage is special in that it doesn't carry a rigid tail; rather it creates a tube tail when needed at the time of infection to pass its DNA through to the host. We now show that this tube formation is accomplished via concerted restructuring of the icosahedral capsid and remodeling of the internal icosahedral protein-rich virus membrane. We also find that this tail tube is studded with membrane-associated proteins and its internal diameter allows one double-stranded DNA chain to be injected. Finally, we capture PRD1 in 3-D with the proteo-lipidic tail piercing the gram-negative bacterial cell and shuttling its viral genome in vivo. These results provide insights into a new mechanism of viral genome delivery.

Highlights

  • A fundamental step in the lifecycle of all known viruses is the genome translocation into the target cell

  • We performed subtomogram averaging of intact wt PRD1 particles with no imposition of icosahedral symmetry and with a loose shell mask that included the vesicle in the alignment process in the attempt to detect coarse asymmetrical structural features

  • Our data reveal a range of viral membrane shapes (Figures 1B–D, 2A, left, and 3)

Read more

Summary

Introduction

A fundamental step in the lifecycle of all known viruses is the genome translocation into the target cell. PRD1 is an internal membrane-containing dsDNA bacteriophage (family Tectiviridae) whose crystallographic studies (Figure 1A, left) have provided unprecedented insights into the assembly mechanism of large complex viruses [8,9,10]. With several other such examples [11,12,13,14,15,16], this has led to a novel principle of classifying viruses based on their major capsid protein (MCP) fold [17,18]. The 3D structure of this unique vertex is not known

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call