Abstract

Arsenate (As(V)) is a toxic element in acid mine drainage and has to be removed during the neutralization process. Coprecipitation with ferrihydrite is the main mechanism for As(V) removal from acid mine drainage. To improve treatment efficiency, a quantitative understanding of the coprecipitation mechanism is required. Coprecipitation can incorporate more As(V) into ferrihydrite than adsorption. The results of XRD (X-ray Diffraction) and XANES (X-ray Adsorption Near Edge Structure) analysis confirmed that the formation of poorly crystalline ferric arsenate increased when the initial As/Fe molar ratio increased in the coprecipitation with ferrihydrite. EXAFS (Extended X-ray Adsorption Fine Structure) analysis at the iron K-edge showed that the proportion of octahedral structures in ferrihydrite increased when the initial As/Fe molar ratio increased. Moreover, EXAFS analysis at the arsenic K-edge, assuming three kinds of surface complexes for the AsFe bond, revealed that the coordination number for AsFe with an atomic distance of 2.85 × 10−10 m increased and that for As-Fe with an atomic distance of 3.24 × 10−10 m decreased as the initial As/Fe molar ratio increased. Thus, for more efficient wastewater treatment, active control of coprecipitation phenomena according to mechanistic details is essential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.