Abstract

Dense and flexible silicon dioxide-like barrier coatings were deposited by microwave postdischarge (downstream plasma). The optical transparency, recyclability, and compatibility with microwave usage are some of the advantages of SiOx offers as compared to thin metallic coatings. Generally, porous silicon dioxide coatings with poor barrier properties are obtained by microwave downstream plasmas, because of limited ion bombardment. Here, we demonstrate that by using very high powers, mechanically robust, barrier coatings deposit both by pulsed and continuous microwave downstream discharges. These SiOx coatings exhibit hardness comparable to Al2O3, but have higher elasticity. Thus, the SiOx have superior cohesion and the ability to recover after cracking. The high critical tensile and compression strain for crack formation demonstrates that these coatings are very resistant and flexible. Correspondingly, a two orders of magnitude barrier improvement is obtained with 100-nm-thick-coating deposited by continuous discharge. The films deposited by pulsed discharges show better elasticity and flexibility but slightly lower barrier performances compared to the coatings deposited by continuous discharges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.