Abstract

A concept for the realization of semitransparent bifacially active highly efficient and light weight crystalline silicon solar cells is presented. The concept is based on the preparation of perpendicular V-grooves in silicon blanks by mechanical abrasion using a dicing saw and beveled blades. Holes of variable diameter are formed automatically in the processing step, which provide a connection between the passivated phosphorus doped front and back side emitters. A maximum bulk-emitter distance of ∼30 μm has been realized in 200 μm thick structures which should result in highly efficient solar cell devices even in small grain low quality polycrystalline material. The partial transparency of the presented solar cell structure opens the way for new applications (crystalline Si photovoltaic windows, etc.). The feasibility of the mechanical grooving process has been demonstrated on Wacker SILSO cast silicon. Double-side V-grooved structures (distance between grooves 90 and 140 μm, bevel angle 35°) with hole diameters in the range 10–70 μm, corresponding to a transmittance of up to 30% in the visible, have been prepared with excellent uniformity and mechanical stability over a large area (5×5 cm2). An average total reflectance in the range 500–1000 nm of Rav=0.9% has been measured on a structure with a geometrical hole fraction of 1.7% after growth of a 1170 Å thick layer of thermal oxide. This SILSO structure had an effective silicon thickness of 120 μm, whereas the absorptance spectrum near the band edge was similar to a 5.5 mm thick nongrooved silicon wafer, indicating the excellent light trapping obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.