Abstract
Poly(ether–ester)/cerium oxide (CeO2) composites with CeO2 nanoparticles of 0, 1, 2, 3, 4, and 5 wt% were prepared from dimethyl terephthalate, 1,4-butanediol, polytetramethylene glycol, and CeO2 nanoparticles by traditional melt polymerization. The Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, tensile strength, thermal stability, aging resistance, ultraviolet resistance, and low-temperature elastic recovery of these composites were characterized. The results indicated that introduction of CeO2 nanoparticles into poly(ether–ester) can enhance the mechanical, thermal, low-temperature elastic recovery properties and ultraviolet resistance of traditional poly(ether–ester). In particular, the incorporation of 2 wt% CeO2 nanoparticles endowed poly(ether–ester) with the best performance in mechanical and low-temperature elastic recovery properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.