Abstract

Cerium (Ce)-based compounds, such as CeO₂ nanoparticles (NPs), have received much attention in the last several years due to their popular applications in industrial and commercial uses. Understanding the impact of CeO₂ NPs on nutrient cycles, a subchronic toxicity study of CeO₂ NPs on soil-denitrification process was performed as a function of particle size (33 and 78 nm), total Ce concentration (50-500 mg L(-1)), and speciation [Ce(IV) vs. Ce(III)]. The antimicrobial effect on the soil-denitrification process was evaluated in both steady-state and zero-order kinetic models to assess particle- and chemical-species specific toxicity. It was found that soluble Ce(III) was far more toxic than Ce(IV)O₂ NPs when an equal total concentration of Ce was evaluated. Particle size-dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations. Changes in physicochemical properties of Ce(IV)O₂ NPs might be important in assessing the environmental fate and toxicity of NPs in aquatic and terrestrial environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call