Abstract

The geological environment along a buried pipeline in permafrost regions is complex, where differential frost heave often occurs. To understand the changes in the stress behavior of pipeline structures caused by corrosion while laying them in permafrost regions, we established a thermo-mechanical coupling model of buried pipeline with corrosion defects by using finite element software. Numerical simulation analysis of buried pipeline was conducted. The effects of the frost heave length, the length of the transition section, the corrosion depth, and the corrosion length on the stress displacement were obtained. These analyses showed that the stresses and displacements of the pipeline with corrosion defects in permafrost regions can be simulated by using the finite element software numerical simulation method. Afterward, the corrosion resistances of pipelines with different corrosion lengths and depths were investigated via an electrochemical testing method. These results can provide some useful insights into the possible mechanical state of buried pipeline with regard to their design and construction, as well as some useful theoretical references for simulating real-time monitoring and safety analysis for their operation in permafrost regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call