Abstract

The Tersoff-potential based MD (molecular dynamics) method was used to simulate the radial compression of one (10,0) BN nanotube, and its compressive properties was compared with those of one (10,0) carbon nanotube. The semi-empirical PM3 QC (Quantum chemistry) method was adopted to calculate the electronic structures of the compressed BN-tube, and the effect of the radial compression on the electronic structures of the BN-tube was discussed. It is shown that (i) BN-tube has comparable radial compressive stiffness to carbontube, but lower energy-absorbing, load-support and deformation-support capabilities, and (ii) with the increase of compressive strain, the HOMO energy of the BN-tube increases, the LUMO energy and the LUMO-HOMO energy-gap decrease, and its chemical activity and conductance increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call