Abstract

IntroductionMalignant ureteral obstruction caused by cancer diseases may induce renal failure. Indwelling stent is a popular method to release renal obstruction. But adequate stent placement across an obstructed ureter does not necessarily guarantee renal decompression. The aim of the study was to compare, in vitro, the physical characteristics and stiffness of several commercially available reinforced ureteral stents and identify the physical factors that could lead to the obstruction of the stent.Material and MethodsThe test apparatus used for measurements allowed applying a radial compression force on a segment of the stent to stop a water flow through the lumen of the stent. Some reinforced double-pigtail stents Teleflex Medical, Bard, and Coloplast were evaluated.ResultsThe best physical-stiffness characteristic was obtained with the Teleflex 8F stent (5.4 N mm−2). The best result against the radial compression was obtained with tandem stents. The radial compressive stresses of the Teleflex stents (4.4 to 5.4 N mm−2) were higher than with the other stents used in the study (1.0 to 2.9 N mm−2). Among the reinforced stents selected in the present study, a wider inner diameter helped increase volumetric flow rate but did not affect the stiffness of the stent. The measurement of inner diameter showed heterogeneity along the tube of some stents.ConclusionThe stiffness of the stent appeared to be an important factor to maintain patency with respect to radial compression forces but the inner diameter of the stent and its preservation may be essential parameters to increase the volumetric flow rate. Some reinforced stents tested in the present study confirmed that it is possible to combine stiffness and wide lumen. The use of tandem stents provided the best stiffness against radial compression and the greatest lumen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call