Abstract

Abstract Owing to their biodegradable nature and cost-effectiveness, natural fibers have attracted the attention of various material scientists. One such fiber is human hair (HH), which is viscoelastic-plastic in nature and encloses well-characterized microstructures within it. An important aspect is that a strand of HH having a diameter of 60 μm is capable of withstanding a force of 100–150 grams/fiber. However, wastage of HH on an enormous scale poses an environmental challenge. Therefore, the authors have utilized this novel fiber in the field of composites and revealed the systematic methodology of fabricating HH with polymers using the wet hand lay-up technique. The diverse compositions of polymer-HH composite, with varying HH weight percentages (wt.%) of 5, 6, 7, 8, 9, and 10 %, were put to investigation. In the present work, treatment of HH with potassium hydroxide and curing of polymer further enhanced the bonding properties of composites. The specimens were examined micro-structurally through scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) tests, followed by the mechanical tests: tensile, compression, flexural, hardness, and impact. Both the microstructural and mechanical tests complemented each other and confirmed that the cured polymer composite speckled with 7 wt.% of HH fiber content was the best of all formulations, as it provided the highest magnification in mechanical properties relative to neat polymer. Finally, the thermal analysis was done via thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.