Abstract
Mechanical load-assisted dissolution is identified as one of the key mechanisms governing material removal in fretting and crevice corrosion of biomedical implants. In the current study, material removal on a stressed surface of cobalt–chromium–molybdenum (CoCrMo) subjected to single asperity contact is investigated in order to identify the influence of contact loads and in-plane stress state on surface damage mechanisms. The tip of an atomic force microscope is used as a well-characterized “asperity” to apply controlled contact forces and mechanically stimulate the loaded specimen surface in different aqueous environments from passivating to corroding. The volume of the material removed is measured to determine the influence of contact loads, in-plane stresses and the environment on the material dissolution rate. Experimental results indicate that surface damage is initiated at all the contact loads studied and as expected in a wear situation, removal rate increases with increase in contact loads. Removal rates display a complex dependence on residual stresses and the environment. In a passivating environment, the material removal rate is linearly dependent on the stress state such that surface damage is accelerated under compressive stresses and suppressed under tensile stresses. In a corrosive environment, the dissolution rate demonstrates a quadratic dependence on stress, with both compressive and tensile stresses accelerating material dissolution. A surface damage mechanism based on stress-assisted dissolution is proposed to elucidate the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.