Abstract

Surface damage at interfaces of modular implants results from repeated fretting contacts between metallic surfaces in a corrosive environment. As a first step in understanding this complex process, multi-asperity contact experiments were conducted to characterize roughness evolution due to action of contact loads and exposure to a reactive environment. Cobalt–chromium specimens with surface roughness similar to modular implant were first subjected to only contact loading and subsequently, to alternating contact loads and exposure to reactive environment. During repeated normal contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. However during the second phase surface roughness amplitude continuously evolved—decreasing during contact loading and increasing on exposure to corrosive environment. The increase in roughness amplitude during surface reaction depended on the magnitude of applied contact loads. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured surface roughness evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call