Abstract
The force-free helical reactor (FFHR) is a conceptual design of a steady state fusion reactor that has been studied to demonstrate a LHD-type fusion power plant. The helical coil of the FFHR has a major radius of 14 m, a magnetic energy of 120 GJ and a maximum field of 13 T. An aluminium-alloy jacketed Nb3Sn superconductor and indirect cooling using cooling panels within the coil was proposed as a candidate magnet system for the helical coil. Due to the complicated three-dimensional structure of the helical coil winding, it is very important to clarify the mechanical behaviour of the magnet, by considering not only the overall force and deformation but also the detailed stress and strain behaviour in the cross section of the coil. In this study, we evaluated the mechanical behaviour of the helical coil using a 3D axisymmetric finite element method model by considering the non-axisymmetric electromagnetic force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.