Abstract
An experimental measurement campaign is presented where particle image velocimetry (PIV) was used in an effort to characterize the velocity field in a turbocharger compressor when unstable operating conditions lead to flow reversing from the diffuser into the inlet pipe. Previous studies have successfully used this and similar techniques, but the most relevant results have been obtained in an open compressor where the backflow can diffuse into the ambient. In this work a glass pipe long enough to confine the full extent of the backflow has been used. Advantage was taken from the fact that this backflow is at higher temperature due to the compression process, enabling a preliminary work where a thermocouple array was used to estimate its maximum length across the compressor map. Using these results as a reference both axial and transversal velocity fields were measured. Issues associated with each one are described, along with relevant results that show how the technique correctly identifies the reversed flow, a conclusion that is supported by the comparison of the velocity average and standard deviation profiles with those of measured temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.