Abstract

Spiral annular flow within ducts is widely utilized in modern industry, with the swirler serving as a critical component in generating such flow patterns. The structure of the swirler significantly influences the generation and stability of the spiral annular flow. This study selected four different swirler structures with outstanding performance from previous research and analyzed their characteristics through visual image processing combined with numerical simulations. By analyzing the amplitude information of the wave fluctuations in the annular swirling flow liquid film under different operating conditions using probability density functions, it was found that the swirler A(Flat-vane swirler) and swirler B(Flat-vane swirler with hub) produced smaller fluctuations in the annular swirling flow liquid film, indicating better stability compared to the swirler C(Arc-vane swirler) and swirler D(Spiral-vane swirler), which exhibited poor performance. Combining the numerical simulation results with the analysis of the internal mechanism of the swirlers, it was discovered that within the swirler A and swirler B, the fluid between the swirler vanes experienced a larger pressure gradient, resulting in phenomena such as “jump” and “pull” under this pressure gradient. This, in turn, contributed to the generation of greater tangential velocity and radial pressure gradient after the fluid exited the swirler. Due to the influence of the swirler structure, the swirler A and swirler B did not completely separate the fluid region into four independent spaces. Instead, in the central connection area of the rear section of the swirler, the gas phase components aggregated earlier, greatly promoting the downstream generation of spiral annular flow. This study analyzed the two-phase flow process and mechanism inside the swirler, filling a gap in previous research and providing important references for the optimization and selection of swirlers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call