Abstract

An experimental analysis of the precessing vortex core (PVC) instability in a free swirling jet of air at ambient pressure and temperature is performed by means of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Two parametric studies are considered, varying the swirl parameter and the Reynolds number. The range of parameters considered allowed to study conditions of strong precession as well as the inception and settlement of the instability. Mean velocity and standard deviation profiles, power spectral density functions and probability density functions for the axial and tangential velocity components are presented. Average as well as instantaneous PIV maps are considered in the characterization of the flowfield structure and detection of the instantaneous position of the vortex center. Joint analysis of velocity PDFs and power spectra shows that the PVC contribution to the global statistics of the velocity field can be properly separated from the contribution of the true flow turbulence, giving additional insight to the physics of the precession phenomenon. The results obtained in the explored range of conditions indicate that the true turbulence intensity is not dependent on the swirl parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call