Abstract

ABSTRACTAnalysis of the total surface energy γTand its three components as established by the van Oss-Chaudhury-Good Theory (vOCG) is conducted via Three Liquid Contact Angle Analysis (3LCAA). γTis correlated with the composition of the top monolayers (ML) obtained from High-Resolution Ion Beam Analysis (HR-IBA). Control of γTenables surface engineering for wafer bonding (Nano-BondingTM) and/or epitaxial growth. Native oxides on boron-doped p-Si(100) are found to average γTof 53 ± 1.4 mJ/m2) and are always hydrophilic. An HF in methanol or aqueous HF etch for 60 s always renders Si(100) hydrophobic. Its γTdecreases by 20% to 44 ± 3 mJ/m2in HF in methanol etch and by 10% to 48 ± 3 mJ/m2in aqueous HF. On the contrary, GaAs(100) native oxides are found to always be hydrophobic. Tellurium n+-doped GaAs(100) yields an average of γTof 37 ± 2 mJ/m2, 96% of which is due to the Lifshitz-Van der Waals molecular interactions (γLW= 36 ± 1 mJ/m2). However, hydrophobic GaAs(100) can be made highly hydrophilic. After etching, γTincreases by almost 50% to 66 ± 1.4 mJ/m2. 3LCAA shows that the γTincrease is due to electron acceptor and donor interactions, while the Lifshitz-van der Waals energy γLWremains constant. IBA combining the 3.039 ± 0.01 MeV oxygen nuclear resonance with <111> channeling, shows that oxygen on Si(100) decreases by 10% after aqueous HF etching, from 13.3 ± 0.3 monolayers (ML) to 11.8 ± 0.4 ML 1 hour after etch.Te-doped GaAs(100) exhibits consistent oxygen coverage of 7.2 ± 1.4 ML, decreasing by 50% after etching to a highly hydrophilic surface with 3.6 ± 0.2 oxygen ML. IBA shows that etching does not modify the GaAs surface stoichiometry to within 1% . Combining 3LCAA with HR-IBA provides a quantitative metrology to measure how GaAs and Si surfaces can be altered to a different hydroaffinity and surface termination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.