Abstract

ABSTRACTChemical bonding in native oxides of GaAs, before and after etching, is detected by X-Ray Photoelectron Spectroscopy (XPS). It is correlated with surface energy engineering (SEE), measured via Three Liquid Contact Angle Analysis (3LCAA), and oxygen coverage, measured by High Resolution Ion Beam Analysis (HR-IBA).Before etching, GaAs native oxides are found to be hydrophobic with an average surface energy, γT, of 33 ± 1 mJ/m2, as measured by 3LCAA. After dilute NH4OH etching, GaAs becomes highly hydrophilic and its surface energy, γT, increases by a factor 2 to a reproducible value of 66 ± 1 mJ/m2. Using HR-IBA, oxygen coverage on GaAs is found to decrease from 7.2 ± 0.5 monolayers (ML) to 3.6 ± 0.5 ML. The 1.17 ratio of Ga to As, measured by HR-IBA, remains constant after etching.XPS is used to measure oxidation of Ga and As, as well as surface stoichiometry on two locations of several GaAs(100) wafers before and after etching. The relative proportions of Ga and As are unaffected by adventitious carbon contamination. The 1.16 Ga:As ratio, measured by XPS, matches HR-IBA analysis. The proportions of oxidized Ga and As do not change significantly after etching. However, the initial ratio of As2O5 to As2O3, within the oxidized As, significantly decreases after etching from approximately 3:1 to 3:2.Absolute oxygen coverage, as a function of surface processing, is determined within 0.5 ML by HR-IBA. XPS offers insight into these modifications by detecting electronic states and phase composition changes of GaAs oxides. The changes in surface chemistry are correlated to changes in hydro-affinity and surface energies measured by 3LCAA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.