Abstract
The scanning mobility particle sizer (SMPS) and the electrical low-pressure impactor (ELPI) are frequently used to measure particle size distributions of combustion aerosols. The instruments are especially popular for diesel exhaust measurements since the emission of “particulate matter” is restricted by legislation. A problem is that the interpretation of the results that these instruments give is not straightforward: fractal-like diesel soot agglomerates in the exhaust have a complex interaction with their carrier gas. This paper focuses on this complex interaction in order to assess its effect on the instruments’ output. A theoretical model for the aerodynamic behavior of fractal-like agglomerates is used as a tool to assess the performance of the ELPI and the SMPS for the measurement of diesel soot particles. The model couples the aerodynamic diameter and the mobility diameter for fractal-like soot agglomerates. Visual analysis with scanning electron microscopy (SEM) aids model development and instrument performance assessment. It is concluded that the performance of both instruments is affected by the fractal-like structure of diesel soot. The ELPI, if it is set to measure the aerodynamic diameter, gives an underestimation of the apparent size of particles due to their fractal-like structure. As a result, the number of particles is overestimated. The model presented in this paper helps interpretation of the ELPIs response. The SMPS is affected by multiple charging of soot agglomerates, larger than 1000 nm , which are abundantly present in diesel exhaust gas and are not removed by the impaction stage at the input due to their small effective density. The diesel engine in this paper emits many of such particles. Multiple charging leads to an underestimation of the size of the agglomerates and hampers size classification in the instrument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.