Abstract

Atmospheric inorganic gases such as NOx, SO2, and NH3 have diverse effects on the formation of secondary organic aerosol (SOA). A comprehensive investigation is necessary to fully understand the atmospheric processing of SOA. In this study, we examined the photooxidation of xylene isomers in the presence of inorganic gases using a combined facility comprising a smog chamber (SC) and an oxidation flow reactor (OFR). SC experiments at higher xylene concentrations and humid conditions revealed SOA yields of 37%, 39%, and 39% with NH3, compared to 15%, 11%, and 13% without NH3, for o-, m-, and p-xylene, respectively. This increase was primarily attributed to the enhanced formation of secondary inorganic aerosol (SIA) in the presence of NH3, consequently increasing aerosol surface area and aerosol water content (AWC). Vapor wall losses (VWL), estimated using a kinetic method, were substantial even with the elevated aerosol surface area provided by SIA. Additional photochemical reactions in the OFR showed a gradual increase in SOA mass and yield over an atmospheric equivalent aging time of 0.5–4.0 days. In the OFR, the SOA yield increased significantly when negligible xylene remained after SC reactions. Fresh SOA formation in the OFR might have decreased the oxygen-to-carbon ratio and oxidation state of carbon, which gradually increased with increasing OFR aging. High OH radical exposure in the OFR likely caused the photodegradation of SC-formed ON, as evidenced by an abrupt decrease in the NO+/NO2+ ratio measured. This study indicates that SOA formation potential of the aromatic hydrocarbon is highly underestimated without considering the combined effects of inorganic gases along with aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.