Abstract
High-energy photon interrogation is a nondestructive technique that is used to detect special nuclear materials and characterize nuclear waste. The development of such systems is complex and requires Monte Carlo simulations to optimize system performance. Monte Carlo simulations rely on various scattering, absorption, and photonuclear cross-section data. While the scattering and absorption cross-section data have been extensively studied and validated with experiments, the results obtained from photonuclear simulations are often found to underpredict measured results, indicating uncertainties in the photonuclear cross sections themselves. Thus, there is a need for new measured results that can be used to quantify underpredictions in simulations using photonuclear cross-section data. In the present work, we interrogated depleted uranium with a 9-MV electron linac and detected photoneutrons with trans-stilbene organic scintillators. The measurement of photoneutrons with organic scintillators is challenging due to the presence of the intense photon flux, which causes issues such as pulse pile-up, detector saturation, and poor signal-to-background ratio. To mitigate these challenges, we used iron and polyethylene shielding of varying thicknesses around the depleted uranium target and a neural network–based digital pulse processing algorithm to recover neutron and photon information from piled-up events. Our goal was to compare the measured photoneutron count rate with the simulated rate obtained using the MCNPX-PoliMi transport code. For a light output window of 0.28 to 2.67 MeVee (1.66- to 6.85-MeV proton recoil energy), we found that the simulated count rate obtained using the ENDF/B-VII photonuclear cross-section library underpredicts the measured rate by 32.8% ± 3.2%. Additionally, we compared the simulated and measured photoneutron light output distributions. For the least thicknesses of shielding, the simulation was found to underpredict measurements in the 0.70- to 2.67-MeVee light output window. For the greatest thicknesses of shielding, the simulation was found to underpredict the measurement across the entire light output window of 0.28 to 2.67 MeVee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.