Abstract
Recently, a phase evaluation method was proposed to measure nanometric displacements by means of digital speckle pattern interferometry when the phase change introduced by the deformation is in the range [0,π) rad. This method is based on the evaluation of a correlation coefficient between two speckle interferograms generated by both deformation states of the object. In this paper, we present a novel technique to measure non-monotonous displacements in temporal speckle pattern interferometry using a correlation method without a temporal carrier. In this approach, the sign ambiguity is resolved automatically due to the introduction of a function that determines the correct sign of the displacement between two consecutive speckle interferograms. The rms phase errors introduced by the proposed method are determined using computer-simulated speckle interferograms. An application of the phase retrieval method to process experimental data is also presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.