Abstract

The measurement of dynamic displacements by use of speckle pattern interferometry and temporal phase unwrapping allows for the evaluation of large-object displacement fields without the propagation of spatial unwrapping errors. If a temporal carrier is introduced in one of the beams of the interferometer, phase data for whole-object displacement can be retrieved by use of a temporal phase-shifting method or a temporal Fourier transformation approach. We present a comparison between both methods of temporal phase measurement in terms of precision and execution speed. We performed the analysis by using computer-simulated speckle interferograms, an approach that allowed us to know precisely the original phase distribution and also to determine the spatial rms phase error as a function of the phase change introduced between two consecutive speckle interferograms. The performance of both methods to process experimental data is also illustrated by use of the results from a high-speed speckle interferometry study of a carbon fiber panel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.