Abstract
We report on a measurement of the size of charge clouds produced by X-ray photons in X-ray SOI (Silicon-On-Insulator) pixel sensor named XRPIX. We carry out a beam scanning experiment of XRPIX using a monochromatic X-ray beam at 5.0 keV collimated to $\sim 10$ $\mu$m with a 4-$\mu$m$\phi$ pinhole, and obtain the spatial distribution of single-pixel events at a sub-pixel scale. The standard deviation of charge clouds of 5.0 keV X-ray is estimated to be $\sigma_{\rm cloud} = 4.30 \pm 0.07$ $\mu$m. Compared to the detector response simulation, the estimated charge cloud size is well explained by a combination of photoelectron range, thermal diffusion, and Coulomb repulsion. Moreover, by analyzing the fraction of multi-pixel events in various energies, we find that the energy dependence of the charge cloud size is also consistent with the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.