Abstract
The novel and rapid assay presented here combines high-performance liquid chromatography and electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) to directly measure and quantify the CoA esters of 3alpha,7alpha,12alpha-trihydroxy- and 3alpha,7alpha-dihydroxy-5beta-cholestan-26-oic acid (THCA and DHCA). The latter are converted inside peroxisomes to the primary bile acids, cholic and chenodeoxycholic acids, respectively. Prior to MS/MS, esters were separated by reversed-phase HPLC on a C(18) column using an isocratic mobile phase (acetonitrile/water/2-propanol) and subsequently detected by multiple reaction monitoring. For quantification, the CoA ester of deuterium-labelled 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oic acid (d(4)-CA) was used as internal standard. To complete an assay took less than 8 min. To verify the validity of the assay, the effect of peroxisomal proteins on the efficacy of extraction of the CoA esters was tested. To this end, variable amounts of the CoA esters were spiked with a fixed amount of either intact peroxisomes or peroxisomal matrix proteins and then extracted using a solid-phase extraction system. The CoA esters could be reproducibly recovered in the range of 0.1-4 micromol l(-1) (linear correlation coefficient R(2) > 0.99), with a detection limit of 0.1 micromol l(-1). In summary, electrospray ionization tandem mass spectrometry combined with HPLC as described here proved to be a rapid and versatile technique for the determination of bile acid CoA esters in a mixture with peroxisomal proteins. This suggests this technique to become a valuable tool in studies dealing with the multi-step biosynthesis of bile acids and its disturbances in disorders like the Zellweger syndrome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have