Abstract

AbstractA new method is described employing small drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. Previous studies have shown that accurate surface current measurements using HF radar require APMs. The APMs provide directional calibration of the receive antennas for direction-finding radars. In the absence of APMs, so-called ideal antenna patterns are assumed and these can differ substantially from measured patterns. Typically, APMs are obtained using small research vessels carrying radio signal sources or transponders in circular arcs around individual radar sites. This procedure is expensive because it requires seagoing technicians, a vessel, and other equipment necessary to support small-boat operations. Furthermore, adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, it is shown that drone aircraft can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward, since they are not affected by the surfzone, and thereby expand the range of bearings over which APMs are determined. This simplified process for obtaining APMs can lead to more frequent calibrations and improved surface current measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.