Abstract
The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have