Abstract
The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have