Abstract
Research on measurement error in network data has typically focused on missing data. We embed missing data, which we term false negative nodes and edges, in a broader classification of error scenarios. This includes false positive nodes and edges and falsely aggregated and disaggregated nodes. We simulate these six measurement errors using an online social network and a publication citation network, reporting their effects on four node-level measures – degree centrality, clustering coefficient, network constraint, and eigenvector centrality. Our results suggest that in networks with more positively-skewed degree distributions and higher average clustering, these measures tend to be less resistant to most forms of measurement error. In addition, we argue that the sensitivity of a given measure to an error scenario depends on the idiosyncracies of the measure's calculation, thus revising the general claim from past research that the more ‘global’ a measure, the less resistant it is to measurement error. Finally, we anchor our discussion to commonly-used networks in past research that suffer from these different forms of measurement error and make recommendations for correction strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.