Abstract
Measurement error in both the exposure and the outcome is a common problem in epidemiologic studies. Measurement errors in the exposure and the outcome are said to be independent of each other if the measured exposure and the measured outcome are statistically independent conditional on the true exposure and true outcome (and dependent otherwise). Measurement error is said to be nondifferential if measurement of the exposure does not depend on the true outcome conditional on the true exposure and vice versa; otherwise it is said to be differential. Few results on differential and dependent measurement error are available in the literature. Here the authors use formal rules governing associations on signed directed acyclic graphs (DAGs) to draw conclusions about the presence and sign of causal effects under differential and dependent measurement error. The authors apply these rules to 4 forms of measurement error: independent nondifferential, dependent nondifferential, independent differential, and dependent differential. For a binary exposure and outcome, the authors generalize Weinberg et al.'s (Am J Epidemiol. 1994;140(6):565-571) result for nondifferential measurement error on preserving the direction of a trend to settings which also allow measurement error in the outcome and to cases involving dependent and/or differential error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.